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Abstract: A new optimization method based on the topological derivative concept is developed
for the electromagnetic design problem. Essentially, the purpose of the topological derivative
method is to measure the sensitivity of a given shape functional with respect to a singular domain
perturbation, so that it has applications in many relevant fields such as shape and topology
optimization for imaging processing, inverse problems, and design of metamaterials. The
topological derivative is rigorously derived for the electromagnetic scattering problem and used
as gradient descent direction to find local optima for the design of electromagnetic devices. We
demonstrate that the resulting topology design algorithm is remarkably simple and efficient and
naturally leads to binary designs, while depending only on the solution of the conventional finite
element formulation for electrodynamics. Finally, several numerical experiments in two and
three spatial dimensions are presented to illustrate the performance of the proposed formulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The design of electromagnetic devices is a challenging engineering effort due to the complex
dynamics of electromagnetic waves in dielectric and conductive media. Those rich dynamics,
even in linear media, give rise to a multitude of effects—from resonances and waveguiding to
bandgaps, metamaterials and topological effects—that empower researchers and engineers to
design progressively more complex and efficient systems and devices. Optimization plays a key
role in this process and it can be as simple as tuning a few geometrical parameters of the structure,
or as complex as designing the whole structure itself based on high-level functionality goals. The
latter case is usually referred to as topology optimization, where the shape of the device, or its
material composition and distribution, are somehow mapped to the optimization variables.
Recent decades have seen a constant progress in topology optimization in electromagnetic

devices over the whole frequency spectrum between RF and UV. Since the pioneering work by
Bendsøe and Kikuchi [1], considerable improvements have been made on topology optimization,
giving rise to several different approaches, including the so-called Solid Isotropic Material with
Penalization (SIMP) or density-based method [2], which can be considered as the most popular
method employed for topology optimization.
The reviews by Jensen and Sigmund [3] and by Molesky et al. [4] offer a thorough picture

of this progress, with particular interest in the field of nanophotonics. The short wavelengths
combined with advanced and precise fabrication methods for large areas (with respect to the
wavelength) make topology optimization in nanophotonics particularly challenging, but, at the
same time, a rewarding effort. Important contributions in the field have been obtained by the
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density-based method, from which we highlight the pioneering works [5–10]. Time and again,
non-intuitive designs obtained through the most diverse topology optimization methods have
demonstrated figures of merit far beyond their intuitive counterparts, including bio-inspired
methods [11–13], transformation optics [14–16], level-set methods [17–19], perturbation theory
techniques [20], objective-first formulation [21] and pixel-by-pixel optimization method [22,23].
Recent proposals also deal with manufacturing uncertainties and fabrication constraints [24–29],
which are important to guarantee that the optimized designs can be fabricated using current
technology.

Advancing the development of efficient topology optimization methods, in this work we present
a formulation for the electromagnetic scattering problem based on the topological derivative
method. The concept of topological derivative was first proposed in the context of shape and
topology optimization [30]. A complete description of the method can be found in [31]. This
relatively new concept has applications in many different fields such as electromagnetic scatterers
[32], band-gap structures [33], image processing [34], multi-scale constitutive modeling [35]
and, fracture [36] and damage [37] mechanics. For an account on the theoretical development
and applications of the topological derivative method, see the series of review papers [38–40]
and references therein.

The main idea of the topological derivative method is to compute the variation of a predefined
functional over a change in the topology of a given domain. More intuitively, if the domain is
composed of two materials, it calculates the variation of the functional when those materials
are swapped in a given location, similar to a gradient of the functional. The topological
derivative can, therefore, be used in any gradient-based optimization algorithm. In the context
of topological-derivative-based topology optimization methods, the algorithms available in the
literature usually combine topological derivatives with shape derivatives or level-set methods
[41–44], leading to a two-stage topology/shape optimization procedure. More precisely, new
features are nucleated according to the topological derivative, while standard tools in shape
optimization are used to move the new boundaries. Following the original ideas proposed by
Amstutz & Andrä [45], in this paper a topology optimization algorithm based on the topological
derivative together with a level-set domain representation method is devised. The basic idea
consists in achieving a local optimality condition written in terms of the topological derivative
and a level-set function, leading to an efficient one-stage algorithm driven by the topological
derivative only. In particular, the associated topological derivative is rigorously derived and
used as gradient descent direction to find local optima for the inverse electromagnetic design
problem. We demonstrate that the resulting topology design algorithm is remarkably efficient
and of simple computational implementation, since it features a minimal number of user-defined
algorithmic parameters.
One important difference of the topological derivative formulation from more conventional

approaches based on the level-set method [46], is that it does not require one to solve any auxiliary
evolution problem such as the Jacobi equation and, more importantly, the resulting algorithms do
not require any special features from the initial condition, such as a minimal number of holes
in the domain. The implementation of the algorithm requires only the solution of the original
electromagnetic problem and its adjoint, both which have the same formulation and, as such, can
be solved by the same Finite Element Method (FEM) implementation (for instance, COMSOL
Multiphysics’ electromagnetic solver) with just a change of the source term. From both solutions,
the derivative of the objective function with respect to the device topology is directly obtained,
i.e., no further calculations based on the chain rule for derivatives are necessary, which makes
the algorithm straightforward to implement for a variety of objective functions.
Furthermore, whereas in density-based method a gradient vector is calculated with respect

to continuous changes in the dielectric constant (or any other material parameter) over the
optimization domain, the topological derivative, as the name implies, is calculated with respect
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to the topology itself. That means when two materials are chosen for the design problem—for
example, Si and SiO2, as is often the case in nanophotonics—the topological derivative results in
designs where the dielectric constant is either that of Si or SiO2. On the other hand, density-based
methods result in dielectric constant values in the range between those of SiO2 and Si, what is
usually called a gray-scale design. It is often the case that a binarization step is then required
to discretize the design, possibly modifying its calculated optimal response, although recent
advances in projection techniques [47–52] are capable of both tackling the binarization issue and
offering accurate control of the minimal length scales in the design, which is of utmost importance
for any practical purposes in any optimization method. Fabrication constraints can also be
included in the topological derivative formulation as a penalty in the level-set function used
to characterize the topology [29]. As a proof-of-concept, we demonstrate the implementation
of a simple hard constraint for conventional fabrication technology in integrated photonics in
two of the presented examples. Further exploration of the best techniques to introduce such
constraints—particularly in three-dimensional problems—are out of the scope of this work.
This paper is organized as follows: in Section 2, the electromagnetic scattering problem is

defined, where the goal is to design a dielectric (possibly lossy) device based on a predefined
objective function. Section 3 introduces the topological derivative method in the context of
electromagnetic scattering problems. Finally, Section 4 presents several design examples obtained
from different objective function definitions both in two and three spatial dimensions, before a
short summary of this work. The theoretical foundations and the derivation of the topological
derivative associated with the electromagnetic problem are described in the Appendix A.

2. Model problem

Let us consider an open and bounded domain D ⊂ Rd, with d = 2, 3, as illustrated in Fig. 1. A
near-field domain is denoted as BR ⊂ D, with boundary Γ = ∂BR. The optimization region is
given byΩ ⊂ BR, which is split into two disjoints subdomainsΩa andΩb, such thatΩ = Ωa ∪Ωb
andΩa∩Ωb = ∅, withΩa andΩb representing regions with refractive index n1 and n2 respectively
(light and dark regions in Fig. 1). The weak form of the electromagnetic scattering problem
(assuming linear and isotropic media) is stated in the conventional FEM formulation [53,54]:
find E ∈ V, such that∫

D

(
∇ × E · ∇ ×W − k20n

2E ·W
)

dx = S(W) ∀ W ∈ V (1)

where k0 is the wavenumber in vacuum, n the refractive index and S(W) ∈ V ′ represents any
boundary and domain source terms, withV ′ denoting the dual space ofV. Finally, the spaceV
is defined as

V := {W ∈ Hcurl(D;Cd) : n̂ ×W = 0 on Γ}, (2)

where Hcurl(D;Cd) is used to denote the standard complex-valued Hilbert space [55] of vector
functions W : D 7→ Cd, such that W ∈ L2(D;Cd) and ∇ × W ∈ L2(D;Cd). The associated
norms in L2p(D;Cd) and Hcurl(D;Cd) are respectively defined as

‖W ‖L2p(D;Cd) :=
(∫
D

|W |2p dx
) 1

2p

, ‖W ‖Hcurl(D;Cd) :=
(∫
D

(|W |2 + |∇ ×W |2) dx
) 1

2

, (3)

where |W |2p := (W ·W)p for 1 ≤ p < ∞, with W used to denote the complex conjugate of W.
Note that the L2-norm is obtained by setting p = 1 in the above equation (left). Outside BR, the
formulation can be extended to include anisotropic and magnetic materials, as required when
open domains are simulated with the help of perfectly matched layer (PMLs). The associated
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magnetic field is given by
H =

i
k0η0µr

∇ × E (4)

with η0 the vacuumwave impedance, and µr the relative magnetic permeability (assumed constant
and equal for all materials in the near-field domain).

Fig. 1. Domain definitions for the calculation of the topological derivative. The electromag-
netic scattering problem is defined in the domainD, including sources, boundary conditions
and PMLs as usual in FEM formulations. The optimization domain Ω is partitioned between
Ωa and Ωb, which are represented by light and dark regions, respectively. The topology and
shape of those regions are the subject of the optimization of a shape functional, defined in
terms of integrals over the boundary of a near-field domain BR.

The goal is to maximize or minimize a shape functional given, in general form, by

ψ(E) = 〈ϕ(E), ϕ∗(E)〉, (5)

where 〈·, ·〉 is the standard internal product and ∗ is used to denote the complex conjugate.
The complex-valued, scalar or vector function ϕ(E) is assumed to be linear with respect to its
argument, namely

ϕ(αU + V) = α ϕ(U) + ϕ(V) ∀ U,V ∈ V, α ∈ C, (6)

and it is written in terms of integrals concentrated on Γ. In this scenario, we aim to find the best
material distribution within Ω, which means to find the optimal topology for the domains Ωa and
Ωb.

3. The topological derivative method

A quite general approach for dealing with such topology optimization problem is based on
the concept of topological derivative [31,56], which, in our particular case, represents the
(topological) sensitivity of the shape functional ψ(E) with respect to the nucleation of a small
inclusion confined in Ω endowed with different material properties from the background. To be
more precise, the associated topological derivative is given here by the following result:
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Theorem 1 Let ψ(E) be the shape functional (5), with E used to denote the solution to the
variational problem Eq. (1). Then, its topological derivative can be written as

DTψ(x) = 2<{(γ2(x) − 1)k20n
2(x)E(x) · V(x)} (7)

for almost all x ∈ Ω. The contrast γ(x) on the material properties is defined as

γ(x) =

{
n2
n1 , x ∈ Ωa
n1
n2 , x ∈ Ωb

, (8)

and the adjoint state V is solution to the following auxiliary variational problem: find V ∈ V,
such that ∫

D

(
∇ × V · ∇ ×W − k20n

2V ·W
)

dx = 〈ϕ∗(E), ϕ(W)〉 ∀ W ∈ V. (9)

Proof 1 The proof of this results is presented in the Appendix A.
Corollary 2 From the definition for the contrast γ(x) in Theorem 1, the topological derivative

can be rewritten as
DTψ(x) = 2<{k20(n

2
2 − n

2
1)s(x)E(x) · V(x)}, (10)

where the signal function s(x) is given by

s(x) =

{
+1, x ∈ Ωa

−1, x ∈ Ωb
. (11)

It is important to notice that the solution of Eq. (9), required to find DTψ(x) in Eq. (10), can
be obtained by the same solver used to evaluate the original FEM formulation Eq. (1), except
for the change in the source term on the right-hand side. Therefore, the implementation of the
topological derivative-based optimization algorithm does not depend on the implementation of
new algorithms. Many commercial and open source FEM solvers can be used to implement Eq.
(9), including COMSOL Multiphysics and FEniCS [57].

4. Numerical results

In this section, a topology optimization algorithm based on the topological derivative combined
with a level-set domain representation method is presented. It has been proposed in [45] and it
consists basically in achieving a local optimality condition for the optimization problem we are
dealing with, given in terms of the topological derivative and a level-set function. In particular,
the domains Ωa and Ωb are characterized by a level-set function ζ of the form:

Ωa = {x ∈ Ω : ζ(x) < 0} and Ωb = {x ∈ Ω : ζ(x) > 0}, (12)

with Ω = Ωa ∪ Ωb, where ζ vanishes on the interface between Ωa and Ωb. A local sufficient
optimality condition, under a class of domain perturbations given by ball-shaped inclusions, can
be stated as [58]:

DTΨ(x) > 0 ∀x ∈ Ω, (13)

where DTΨ(x) is the topological derivative of the shape functional Ψ(Ω) at the point x ∈ Ω,
which will be defined later in terms of ψ(E) according to the specific problem under consideration.
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Therefore, let us define the quantity

g(x) :=

{
−DTΨ(x) if ζ(x) < 0,
+DTΨ(x) if ζ(x) > 0,

(14)

which allows rewriting the condition (13) in the following equivalent form:{
g(x) < 0 if ζ(x) < 0,
g(x) > 0 if ζ(x) > 0.

(15)

We observe that Eq. (15) is satisfied where the quantity g coincides with the level-set function ζ
up to a strictly positive factor, namely ∃ τ > 0 : g = τζ , or, equivalently

θ := arccos
(
〈g, ζ〉L2(Ω)

‖g‖L2(Ω)‖ζ ‖L2(Ω)

)
= 0, (16)

which can be used as the local optimality condition in the topology design algorithm. Here, θ is
defined as the angle in L2(Ω) between the functions g and ζ , where, for u, v : Ω 7→ R, we define

〈u, v〉L2(Ω) :=
∫
Ω

uv dx and ‖u‖L2(Ω) :=
(∫
Ω

u2 dx
) 1

2

. (17)

Let us now explain the algorithm for the minimization of a given objective function Ψ(Ωj), where
Ωj is used to denote the optimization domain at step j. We start by choosing an initial level-set
function ζ0. In the iteration j of the algorithm, we compute the function gj associated with the
level-set function ζj. Thus, the new level-set function ζj+1 is updated according to the following
linear combination between the functions gj and ζj:

ζ0 : ‖ζ0‖L2(Ω) = 1, (18)

ζj+1 = (1 − α)ζj + α
gj

‖gj‖L2(Ω)
∀ j ∈ N, (19)

where α is a step size that starts at 1 and is geometrically decreased until Ψ(Ωj+1) < Ψ(Ωj) for a
fixed iteration j. We point out that fabrication limits can be included in the form penalty functions
or hard constraints in ζj, but the study of their impact and choice of preferable approach are out
of our scope. A straightforward technique is to use topological opening and closing operations
[59] as hard constraints in (19).

The process ends when the condition θj ≤ εθ is satisfied at some iteration, where εθ is a given
small numerical tolerance. If α is found to be smaller then a given numerical tolerance and the
local optimality condition is not yet satisfied, namely θj > εθ , then a mesh refinement of the
domain Ω is carried out in iteration j and the process is continued.

In practice, the objective functions in all the following examples converged to acceptable values
much sooner than the optimality condition on θj, which may require extreme mesh refinements.
That means that stopping criteria based on electromagnetic design requirements, such as insertion
loss above −1 dB or reflection below −20 dB, are reached faster than the absolute convergence of
the problem, which can save on computation time.
In the following sections we present a few examples of optimization results for two and

three-dimensional devices. Each example uses a different objective function Ψ(Ω) defined in
terms of transmission or reflection coefficients (scattering parameters) or far field radiation. They
are intended to demonstrate the flexibility offered by the optimization method. Information on
the required computational resources is reported in Appendix B.
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4.1. Reflector

The goal in this first example is to design a reflector for a conventional silicon rib waveguide
at 1.55 µm. The objective of the optimization is to maximize the reflection coefficient, i.e.,
maximize |S11 |2 for a 1-port device at a single wavelength.
To define the objective function in terms of scattering parameters S`m, the input and output

ports of the device must be defined over Γ. With the normalized input mode m excited, the
coefficient can be calculated by projecting the electromagnetic fields onto the normalized output
port mode (e` , h`) [60–62]:

S`m := ϕ`(Em) =

∫
Γ

(Em × h` + e` × Hm) · n̂ ds =
∫
Γ

(Em × h` + j` × ∇ × Em) · n̂ ds, (20)

where Em is used to denote the solution of the FEM formulation Eq. (1) with normalized mode
m as a source, n̂ is the unit normal vector field to Γ and

j` =
i

k0η0µr
e` . (21)

Since ϕ` : V 7→ C is a complex-valued scalar function, then 〈ϕ∗`(Em), ϕ`(Em)〉 = ϕ
∗
`(Em)ϕ`(Em).

In this case, the adjoint problem (9) reads: find V ∈ V, such that∫
D

(
∇ × V · ∇ ×W − k20n

2V ·W
)

dx = ϕ∗`(Em)

∫
Γ

(h` × n̂ ·W + n̂ × j` · ∇ ×W) ds ∀ W ∈ V.

(22)
For the reflector, we can define the objective function to be minimized

Ψ(Ω) = 1 − |S11 |2 = 1 − 〈ϕ1(E1), ϕ∗1(E1)〉 = 1 − ψ1(E1) (23)

such that its topological derivative can be written as

DTΨ(x) = −DTψ1(x) (24)

with DTψ1(x) given by Eq. (10).
The optimization domain is defined as a 2.5 µm× 2.5 µm area at the end of a 450 nm-wide

waveguide, illustrated in Fig. 2(a). The electric field is perpendicular to the simulation domain
and the refractive indices used are of SiO2 and that of a 220 nm Si slab waveguide in SiO2 with
the appropriate polarization. All other 2D simulations presented here use these same polarization
and refractive indices.

The results of the optimization can be seen in Fig. 2. The electric field magnitude distribution
along the waveguide in Fig. 2(a) distinctively presents the standing wave profile expected from
a good reflector. The final design presents a reflection coefficient of 0.94 (−0.29 dB). The
convergence plot of Fig. 2(b) shows that the objective function quickly converges, surpassing
−1 dB even before the first mesh refinement. The absolute convergence parameter θ is more noisy
and converges more slowly than the objective function. In larger and more complex problems it
is a good idea to use the objective function as a stopping criterion, based on practical device
requirements.

It is interesting that the shape of the final reflector resembles a conventional grating, except for
a few deformations. A grating would be the intuitive way to manually design a reflector and,
although the initial condition for the optimization was a homogeneous block of Si, the algorithm
started approaching the grating-like design already on the first step, as shown in Fig. 2(c). It is
possible to identify regions at the sides of the main radiation direction where the design seems
to have an “inverted phase” and a higher fraction of Si. Towards the far end of the reflector it
also loses its spherical appearance. Finally, we note that the region directly in touch with the
input waveguide appears to form a rounded cap that shapes the outgoing waves to conform to the
grating.
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Fig. 2. Optimized reflector design. (a) Simulated electric field magnitude |Ez | in linear scale
(PML regions excluded). The white contours indicate material boundaries. (b) Evolution
of the reflection coefficient |S11 |2 and the absolute convergence parameter θ during the
optimization. The values above the plot indicate the refinement of the optimization mesh in
nanometers. (c) Refractive index distributions at 4 iteration steps: initial guess, first iteration,
15th iteration, and final result. Dark and light areas represent Si and SiO2, respectively.

4.2. Power splitter

An unbalanced power splitter can be designed by combining the transmission coefficients from
several outputs in the objective function. This example demonstrates the 2D optimization of a
2 : 1 power splitter through the following objective function and topological derivative:

Ψ(Ω) =
∑
λ

3∑̀
=2

(
T` − |S`1(λ)|2

)2
=

∑
λ

3∑̀
=2
[T` − ψ`(E1(λ))]

2 (25)

DTΨ(x) = −2
∑
λ

3∑̀
=2

(
T` − |S`1(λ)|2

)
DTψ`(x), (26)

in which T` is the target transmission coefficient for port ` and the summation over any number
of wavelengths λ can be used to ensure a desired wavelength range of operation. We set T2 = 1

3
and T3 = 2

3 to accomplish the 2 : 1 split ratio and λ ∈ 1.52 µm, 1.58 µm.
The optimization area measures 4.0 µm× 3.0 µm and is initialized as a uniform block of Si.

The resulting device is presented in Fig. 3(b) in conjunction with the connecting waveguides.
The plot in Fig. 3(a) shows the wavelength response achieved by optimizing at the 2 selected
wavelengths: the splitter presents a flat response in most of the 300 nm range simulated. The
wideband simulation was performed by Finite Difference in Time Domain (FDTD) method using
MEEP [63], and it matches the FEM simulations at both wavelengths used for optimization. The
electric field magnitude distributions at those wavelengths in Figs. 3(c) and (d) does not seem to
contain any resonant structures, which probably assists in the flat splitter response.

The device was also optimized with hard fabrication constraints applied at each iteration in the
form of opening and closing operations [59] in the material distribution to remove small features



Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 33594

Fig. 3. Optimized 2 : 1 power splitter. (a) Wavelength dependency of the transmission
coefficients for the optimized device. The square and circle markers indicate the results and
wavelengths used during optimization, and the lines correspond to an FDTD evaluation of
the design. The cross and plus markers indicate the results for a fabrication-constrained
optimization. (b) Refractive index distribution at the last optimization iteration. (c, d)
Simulated electric field magnitude |Ez | in linear scale at the optimization wavelengths.
The white contours indicate material boundaries. (e) Refractive index distribution of the
optimized device with a fabrication constraint to ensure curvatures of at least 50 nm radius.

and ensure a minimal radius of 50 nm throughout the optimization region. The resulting topology,
displayed in Fig. 3(e), is similar to the previous one, except for the removal of small features.
The transmission coefficients, which can be seen as the cross and plus markers in Fig. 3(a), are
within 5% of the unconstrained values, thus showing that fabrication constraints can be included
in the proposed algorithm.

4.3. Modal multiplexer

This 2D example demonstrates the possibility of using the same 4.0 µm× 3.0 µm area as before
to optimize a more complex device: a wideband 2-mode multiplexer. The objective function has
to be altered to include both input modes, and, therefore, reads:

Ψ(Ω) =
∑
λ

[(
1 − |S31(λ)|2

)2
+

(
1 − |S42(λ)|2

)2]
, (27)

with topological derivative analogous to Eq. (26).
The optimization area, initial conditions and wavelengths are the same as for the power splitter,

but the resulting topology in Fig. 4(b) is quite different. The spectral response is extremely flat,
even though the optimization was performed at only 2 wavelengths, covering more than 300 nm
with transmission above −1.5 dB. Similar to the power splitter case, this happens because the
small wavelength difference between the simulations (less than 5%) is enough to inhibit the
appearance of strongly resonant structures, as can be seen in in the field plots of Figs. 4(c)–(f).
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Fig. 4. Optimized 2-mode multiplexer. (a) Wavelength dependency of the transmission
coefficients for the optimized device. The markers indicate the wavelengths used during
optimization, and the lines correspond to FDTD evaluations of the design. (b) Refractive
index distribution at the last optimization iteration. (c, d) Simulated electric field magnitude
|Ez | in linear scale at the optimization wavelengths for the first input waveguide mode. The
white contours indicate material boundaries. (e, f) Same as before but for the second mode
of the input waveguide.

4.4. Diplexer

The optimization over several wavelengths can also be used to tailor the spectral response of the
device beyond a flat curve. Specific filters can be designed using this feature. As an example, we
design a compact diplexer that splits signals from the O and C bands using λ ∈ 1.31 µm, 1.55 µm.
In this case the objective function is

Ψ(Ω) =
(
1 − |S21(1.31 µm)|2

)2
+

(
1 − |S31(1.55 µm)|2

)2
, (28)

and the topological derivative is again analogous to Eq. (26). The optimization domain is a 3D
volume with area 2.8 µm× 2.8 µm and thickness of 220 nm. The Si waveguides connected to the
device, shown in Fig. 5(b), have widths of 500 nm and the same thickness as the optimization
volume. The optimization was done for the TE modes of the waveguides. All surroundings are
filled with SiO2.
In contrast to the previous designs, the resulting topology presents some resonant features,

as can be seen in the electric field magnitude distributions in Figs. 5(c) and (d) in the form of
more intense and localized spots. Such resonant features help define the spectral response of the
diplexer, presented in Fig. 5(a), which directs each wavelength range towards a different output
port with less than 1 dB insertion loss. The exact values for the insertion losses at 1.31 µm and
1.55 µm are, respectively, −0.88 dB and −0.77 dB, which are very similar to the results reported
by Piggott et al. [64] using an objective-first, adjoint-based method. Once again, the lines are
results from a FDTD simulation to evaluate the device response in a wider range of wavelengths.
This example was also re-optimized with hard fabrication constraints in place in order to

demonstrate that they can also be included in 3D designs. In this case, besides the opening
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Fig. 5. Optimized diplexer for 1.31 µm and 1.55 µm. (a) Wavelength dependency of the
transmission coefficients for the optimized device. The square and circle markers indicate
the results and wavelengths used during optimization, and the lines correspond to an FDTD
evaluation of the design. The FDTD simulation was divided in several wavelength windows
due to the wide frequency range desired and the computational effort required. Stitching the
results naturally leads to the small discontinuities found in the plots. The cross and plus
markers indicate the results for a fabrication-constrained optimization. (b) Refractive index
distribution at the last optimization iteration. (c, d) Simulated electric field magnitude |Ez | in
linear scale at the optimization wavelengths. The white contours indicate material boundaries.
(e) Refractive index distribution of the optimized device with fabrication constraints.

and closing operations in the propagation plane to remove small features (exactly as used in
the power splitter example) another constraint in the perpendicular direction was enforced that
eliminated material changes in this direction, i.e., the device can be fabricated in a single etch step
that removes the full 220 nm silicon layer. For each position of the optimization domain in the
horizontal plane, the material for all elements along the perpendicular direction (perpendicular
to the figure plane) is chosen by simple majority of the signs of the level-set function for those
elements. The results for the insertion losses at 1.31 µm and 1.55 µm are, respectively, −2.4 dB
and −2.1 dB, significantly lower than the unconstrained results. This is a direct result of the small
features found in the unconstrained run. The room for improvement of those results indicate
that further exploration of alternative constraint formulations should be pursued in the future,
including the allowance of pre-determined etch depths and the use of a penalty function instead
of a hard constraint.

4.5. Dual-polarization fiber coupler

This example proposes the design of a coupling structure analogous to a grating coupler for a
Si waveguide with cross-section 450 nm× 220 nm. However, the design targets the modes of a
photonic crystal fiber (PCF) instead of a conventional single-mode fiber, and it aims to couple
both x and y polarization modes into the waveguide’s TE and TM modes, respectively. The
challenge in this example is that no intuitive design exists that produces reasonable coupling
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coefficients, specially considering vertical fiber coupling. In Figs. 6(a) and (b) we can see the
electric fields distributions for the fiber and waveguide modes.

Fig. 6. Optimized dual-polarization coupler. (a) Profile for the main component of the
electric field for the x (|Ex |) and y (|Ey |) polarization modes of the PCF. (b) Same as (a)
for the TE (|Ex |) and TM (|Ey |) waveguide modes. (c) Refractive index distribution at the
last optimization iteration (central cuts in the xy and zx planes). (d) Simulated electric field
magnitude in linear scale for the TE mode (same cut planes). The white contours indicate
material boundaries. (e) Same as (d) for the TM mode.

The objective function is similar to Eq. (27), except that the optimization is performed at
a single wavelength: 1.55 µm. The resulting topology, in Fig. 6(c), displays more details and
higher complexity than previous examples. This is both because the optimization region is
larger (5.0 µm× 5.0 µm× 220 nm) and the problem itself is more complex. Nonetheless, the
dual-polarization coupler presents coupling efficiencies of −2.50 dB and −2.89 dB for the TE and
TMmodes, respectively. The cross-talks from TE to y polarization and from TM to x polarization
are, respectively, −19.6 dB and −29.1 dB. Although fabrication constraints would still have to be
imposed on the geometry, we believe these are encouraging results for a long-sought, compact,
dual polarization coupler for silicon photonics.

4.6. Dielectric nanoantenna

In this example, our goal is to design a compact Si nanoantenna with main radiation lobe
perpendicular to the substrate. The shape functional that will be optimized is the far field of the
antenna, given by

EFF(r) := ϕ(E) = ik
e−ikr

4πr

∫
Γ

[(n̂ × E) × r̂ − ηn̂ × H] eikr̂ ·x dx

=
e−ikr

4πr

∫
Γ

[n̂ × ∇ × E + ik(n̂ × E) × r̂] eikr̂ ·x dx,
(29)

in which k and η are the wavenumber and impedance of the homogeneous medium surrounding Γ,
and r is the far point where the electric field is evaluated, with r̂ the unit vector pointing towards r.



Research Article Vol. 27, No. 23 / 11 November 2019 / Optics Express 33598

Because ϕ : V 7→ Cd is a complex-valued vector function, then 〈ϕ∗(E), ϕ(E)〉 = ϕ∗(E) · ϕ(E).
In this particular case, the adjoint problem Eq. (9) reads: find V ∈ V, such that∫
D

(
∇ × V · ∇ ×W − k20n

2V ·W
)

dx = ϕ∗(E)·
e−ikr

4πr

∫
Γ

[n̂ × ∇ ×W + ik(n̂ ×W) × r̂] eikr̂ ·x dx ∀ W ∈ V.

(30)
In order to maximize the far field, we define the objective function to be minimized as

Ψ(Ω) =
1

1 + |EFF |2
=

1
1 + 〈ϕ(E), ϕ∗(E)〉

=
1

1 + ψ(E)
(31)

and calculate its topological derivative

DTΨ(x) = −
1(

1 + |EFF |2
)2DTψ(x). (32)

The optimization volume is a box with sides of 2.0 µm and thickness of 220 nm, compatible
with conventional thin silicon-on-insulator technology. The feeding structure of the antenna is a
conventional 450 nm× 220 nm Si rib waveguide surrounded by SiO2, excited with its TE mode.
We note that, because the input power is normalized in our simulations, maximizing the electric
far field in a specific direction is equivalent to maximizing the antenna gain in that direction,
since it automatically results in the minimization of the reflected power and power radiated in
other directions.
The optimization results in a design with reflection coefficient of −16.9 dB at wavelength

1.55 µm and antenna gain of 18.8 dB, as shown in Fig. 7(c). The device topology and electric field
magnitude distribution at 1.55 µm can be seen in Figs. 7(a) and (b). It is particularly interesting
to observe the field intensities radiating in the forward and upward directions in Fig. 7(b), which
match the 2 largest radiation lobes in the gain pattern of Fig. 7(c) in the zx plane, as it would be
expected.

Fig. 7. Optimized dielectric nanonatenna. (a) Refractive index distribution at the last
optimization iteration (central cuts in the xy and zx planes). (b) Simulated electric field
magnitude in linear scale (same cut planes). The white contours indicate material boundaries.
(c) Antenna gain along 2 orthogonal radiation directions. The main lobe at 0° (upward
emission) is aligned with the z axis and, for the continuous curve, the 90° direction is aligned
with the x axis (forward emission).
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5. Conclusions

In this work an optimization algorithm for the electromagnetic design problem based on the
topological derivative method has been proposed. Because of the general formulation of the
problem, the possibilities for the shape functional and objective function are unlimited. Several
examples of optimized devices in two and three spatial dimensions are presented with different
objective functions, including both near field and far field formulations. All examples converge
to successful results starting from a block of Si or SiO2, indicating the robustness of the
algorithm to initial conditions. Other useful formulations for the objective function that can
be explored in the future include the total radiated power or the scattering cross-section of the
optimized domain. Those could be used to design dielectric particles with enhanced emission or
specific effective areas. Besides its robustness and the flexibility in the definition the objective
function, the topological derivative-based optimization method has two other important features:
straightforward implementation, since the adjoint problem can be solved by the same solver used
for the electromagnetic scattering problem; and binary search space by definition, which avoids
the need for a binarization of the optimal solution. For these reasons, we believe the topological
derivative-based method will become a valuable tool in the design of compact and complex
optical components in the future.

Appendix A. Topological sensitivity analysis

In this appendix, we present the proof of the main theoretical result of the paper stated through
Theorem 1. Let us start by introducing a topological perturbation confined in a small ball
Bε(x0) ⊂ Ω of size ε and center at x0 ∈ Ω of the form (see sketch in Fig. 8)

γε(x) =

{
γ(x), x ∈ Bε(x0)
1, otherwise

(33)

Therefore, the topologically perturbed counterpart of the shape functional Eq. (5) is given by

ψ(Eε) = 〈ϕ(Eε), ϕ∗(Eε)〉, (34)

where Eε is solution of the following variational problem: Find Eε ∈ V, such that∫
D

(
∇ × Eε · ∇ ×W − k20n

2γ2εEε ·W
)

dx = S(W) ∀ W ∈ V. (35)

Now, we have all elements to derive a close form for the associated topological derivative, which
represents the main theoretical result of the paper.
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Fig. 8. The topological derivative of a shape functional ψ(E) with respect to an inclusion at
x0 in the optimization domain is related to the variation of the functional in similar fashion to
a conventional derivative. The variation of the functional appears as the result of a refractive
index exchange in a small ball of size ε centered at x0.

Appendix A.1. Existence of the topological derivative

The existence of the topological derivative associated to the problem we are dealing with is
ensured by the following result:

Lemma 3 Let E and Eε be the solutions of the variational problems Eq. (1) and Eq. (35),
respectively. Then, the following a priori estimate holds true:

‖Ẽε ‖Hcurl(D;Cd) ≤ Cε
d
2+δ , (36)

with constant C independent of the small parameter ε and 0 < δ < d/2, where Ẽε = Eε − E.
Proof 2 We start by rewriting Eq. (1) as follows:∫
D

(
∇ × E · ∇ ×W − k20n

2γ2εE ·W
)

dx = S(W) −
∫
Bε

(γ2 − 1)k20n
2E ·W dx ∀ W ∈ V, (37)

where we have used the definition for the contrast Eq. (33). By subtracting Eq. (37) from Eq.
(35) we obtain∫

D

(
∇ × Ẽε · ∇ ×W − k20n

2γ2εẼε ·W
)

dx =
∫
Bε

(γ2 − 1)k20n
2E ·W dx ∀ W ∈ V, (38)

with Ẽε = Eε − E. Let us consider a decomposition for Ẽε of the form

Ẽε = Gε + Hε , (39)

where Gε ∈ V is solution to∫
D

∇ × Gε · ∇ ×W dx =
∫
Bε

(γ2 − 1)k20n
2E ·W dx ∀ W ∈ V, (40)

whereas Hε ∈ V is solution to∫
D

(
∇ × Hε · ∇ ×W − k20n

2γ2εHε ·W
)

dx =
∫
D

k20n
2γ2εGε ·W dx ∀ W ∈ V, (41)

From the well-posedness of the above variational problem [53,54], we have

‖Hε ‖Hcurl(D;Cd) ≤ C1‖Gε ‖L2(D;Cd) ≤ C1‖Gε ‖Hcurl(D;Cd). (42)
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By setting W = Gε as test function in the variational problem Eq. (40) we obtain the equality∫
D

∇ × Gε · ∇ × Gε dx =
∫
Bε

(γ2 − 1)k20n
2E · Gε dx. (43)

From the Poincaré inequality [55], the above bilinear form is bounded by below as follows

c‖Gε ‖2Hcurl(D;Cd) ≤

∫
D

∇ × Gε · ∇ × Gε dx, (44)

so that we get

‖Gε ‖2Hcurl(D;Cd) ≤ C2

∫
Bε

(γ2 − 1)k20n
2E · Gε dx, (45)

with C2 = 1/c. The Cauchy-Schwartz inequality [55] yields

‖Gε ‖2Hcurl(D;Cd) ≤ C3ε
d
2 ‖Gε ‖L2(Bε ;Cd). (46)

Notice that, Hölder inequality [55] and the Sobolev embedding theorem [65] can be used to
derive

‖Gε ‖L2(Bε ;Cd) ≤ C4ε
d
2q ‖Gε ‖L2p(Bε ;Cd) ≤ C4ε

δ ‖Gε ‖Hcurl(D;Cd), (47)

for any 1 < q < ∞, with 1/p + 1/q = 1, and δ = d
2q . Therefore

‖Gε ‖Hcurl(D;Cd) ≤ C5ε
d
2+δ and ‖Hε ‖Hcurl(D;Cd) ≤ C6ε

d
2+δ . (48)

Finally, from the triangular inequality in Eq. (39) combined with the above estimates, we obtain
the required result for any 0 < δ < d/2.

Remark 4 The estimate Eq. (36) in Lemma 3 can be written simply as

‖Ẽε ‖Hcurl(D;Cd) = o(ε
d
2 ), (49)

provided that δ > 0. The notation o(f (ε)) has to be understood as

lim
ε→0

o(f (ε))
f (ε)

= 0, (50)

with f (ε) used to denote a real-valued function that goes monotonically to zero when ε → 0.

Appendix A.2. Proof of the main result

Let us subtract Eq. (5) from Eq. (34) to obtain

ψ(Eε) − ψ(E) = 〈ϕ(Eε), ϕ∗(Eε)〉 − 〈ϕ(E), ϕ∗(E)〉

= 2<{〈ϕ∗(E), ϕ(Ẽε)〉} + E1(ε),
(51)

in which Ẽε = Eε − E and the remainder E1(ε) is defined as

E1(ε) := 〈ϕ(Ẽε), ϕ∗(Ẽε)〉. (52)

The Cauchy-Schwartz inequality together with trace theorem [55] and Lemma 3 yields

|E1(ε)| ≤ ‖Ẽε ‖2L2(Γ;Cd) ≤ ‖Ẽε ‖
2
L2(D;Cd) ≤ ‖Ẽε ‖

2
Hcurl(D;Cd) = o(εd), (53)

provided that ϕ(Ẽε) is assumed to be linear with respect to the argument Ẽε and written in terms
of integrals concentrated on Γ.
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From the definition for the contrast Eq. (33), the variational problem (35) can be written as:
find Eε ∈ V, such that∫
D

(
∇ × Eε · ∇ ×W − k20n

2Eε ·W
)

dx = S(W) +
∫
Bε

(γ2 − 1)k20n
2Eε ·W dx ∀ W ∈ V. (54)

After subtracting Eq. (1) from Eq. (54) we obtain∫
D

(
∇ × Ẽε · ∇ ×W − k20n

2Ẽε ·W
)

dx =
∫
Bε

(γ2 − 1)k20n
2Eε ·W dx. (55)

By setting W = Ẽε in Eq. (9) and W = V in Eq. (55), we obtain the following equalities,
respectively: ∫

D

(
∇ × V · ∇ × Ẽε − k20n

2V · Ẽε
)

dx = 〈ϕ∗(E), ϕ(Ẽε)〉, (56)∫
D

(
∇ × Ẽε · ∇ × V − k20n

2Ẽε · V
)

dx =
∫
Bε

(γ2 − 1)k20n
2Eε · V dx. (57)

From the symmetry of both bilinear forms and after taking the real part of the above equalities,
the following important result holds true:

2<{〈ϕ∗(E), ϕ(Ẽε)〉} = 2<{
∫
Bε

(γ2 − 1)k20n
2Eε · V dx}

= 2<{
∫
Bε

(γ2 − 1)k20n
2E · V dx} + E2(ε),

(58)

where we have considered (51). The remainder E2(ε) is defined as

E2(ε) := 2<{
∫
Bε

(γ2 − 1)k20n
2Ẽε · V dx}, (59)

which is bounded as follows:

|E2(ε)| ≤ Cε
d
2 ‖Ẽε ‖L2(Bε ;Cd) ≤ Cε

d
2 ‖Ẽε ‖Hcurl(D;Cd) = o(εd), (60)

where we have used the Cauchy-Schwartz inequality and Lemma 3. From the interior elliptic
regularity [65] of functions E and V , we obtain

2<{〈ϕ∗(E), ϕ(Ẽε)〉} = 2|Bε(x0)| <{(γ2(x0) − 1)k20n
2(x0)E(x0) · V(x0)} +

3∑
i=2
Ei(ε). (61)

The remainder E3(ε) is defined as follows:

E3(ε) := 2<{
∫
Bε

[(γ2 − 1)k20n
2E · V − (γ2(x0) − 1)k20n

2(x0)E(x0) · V(x0)]dx}, (62)

which is trivially bounded as

|E3(ε)| ≤ C
∫
Bε

‖x − x0‖ = O(εd+1) = o(εd), (63)

since all arguments in the integrand are Lipschitz continuous almost everywhere in Ω. After
collecting all terms from Eqs. (51), (58), and (61), we obtain

ψ(Eε) − ψ(E) = 2|Bε(x0)| <{(γ2(x0) − 1)k20n
2(x0)E(x0) · V(x0)} + E(ε), (64)

where, according to Eq. (53), Eq. (60) and Eq. (63), E(ε) =
∑3

i=1 Ei(ε) = o(εd).
Finally, the leading term of the expansion Eq. (64) can be identified as the topological

derivative of the shape functional ψ(E), which concludes the proof of Theorem 1.
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Appendix B. Computational resources

As an indication of the computational resources required to perform the optimizations presented
in the previous examples, Table 1 presents the total computational time spent in each of them
as well as the number of iterations performed. The stopping criteria for all examples was not
defined in terms of their objective function; the optimizations were allowed to continue until no
further improvements could be found and the optimization mesh could not be further refined due
to the memory limits in the computers. It is important to notice that, as a consequence, the final
iterations are much slower than the initial ones.

Table 1. Computational resources for the optimizations. LS and FEM are the number of elements
in the optimization regions for the level-set function and the simulation mesh, respectively.

LS* FEM* DoF* Num. Total

Example (×105) (×105) (×106) of iter. time Config.†

Reflector 0.50 3.93 0.85 150 141min A

Power splitter 0.47 3.78 0.85 164 12.5 h B

Power splitter (constrained) 0.47 3.78 0.85 64 4.2 h B

Modal multiplexer 0.47 3.78 0.85 255 22.1 h B

Diplexer 2.48 10.9 17.2 82 9.3 days C

Diplexer (constrained) 2.48 10.9 17.2 24 3.3 days C

Dual-pol. fiber coupler 1.01 4.40 11.9 120 9.2 days C

Dielectric nanoantenna 0.17 0.73 3.02 106 25 h B

*Values for the last iteration of each example.
†A: Intel i7-9750H at 2.6GHz with 16GB of RAM; B: Intel i7-3820 at 3.6GHz with 64GB of RAM; C: Intel E5-2650
at 2.0GHz with 128GB of RAM.
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